
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1992 Technical Memorandum

4. TITLE AND SUBTITLE

The Syntax of DRAGOON: Evaluation and Recommendations

6. AUTHOR(S)

C. Michael Holloway

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-64-10-02

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17028

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-4385

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

Several di�erent ways to add linguistic support for object-oriented programming to the Ada programming
language have been proposed and developed in recent years. DRAGOON is one such Ada extension. This
paper describes the DRAGOON syntax for classes, objects, and inheritance, and it evaluates the syntax against
the following �ve criteria: readability, writeability, lack of ambiguity, ease of translation, and consistency with
existing Ada syntax. The evaluation reveals several de�ciencies in the notation. The paper concludes with a
proposal for a revised syntax that corrects these de�ciencies.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada; Programming languages; DRAGOON; Syntax 16

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NASA-Langley, 1992

Abstract

Several di�erent ways to add linguistic support for object-oriented

programming to the Ada programming language have been proposed and

developed in recent years. DRAGOON is one such Ada extension. This

paper describes the DRAGOON syntax for classes, objects, and inher-

itance, and it evaluates the syntax against the following �ve criteria:

readability, writeability, lack of ambiguity, ease of translation, and con-

sistency with existing Ada syntax. The evaluation reveals several de-

�ciencies in the notation. The paper concludes with a proposal for a

revised syntax that corrects these de�ciencies.

1. Introduction

The Ada programming language was designed in the late 1970's and early 1980's (Nyberg

1989) before object-oriented programming became popular; as a result, Ada provides little

support for these techniques (Anon. 1989a). In recent years, several groups have attempted

to improve Ada support for object-oriented programming by developing extensions to the

language.

Software Productivity Solutions, Inc., is currently marketing an Ada extension called

Classic-Ada (Donaldson 1989; Anon. 1989b), which is based on the language Smalltalk

(Goldberg and Robson 1983). Harris Corporation has developed a language for their internal

use called InnovAda (Simonian and Crone 1988) that is based on Flavors (Moon 1986) (an

object-oriented extension to Lisp that has been made obsolete by the Common Lisp Object

System (Bobrow et al. 1988)). Several other approaches have been described also (Forestier,

Fornarino, and Franchi-Zannettacci 1989; Winkler 1990).

The most widely praised Ada extension (Johnson 1990) is the programming language

Distributable Reusable Ada Generated from an Object-Oriented Notation (DRAGOON)

(Di Maio et al. 1989; Genolini, Di Maio, and De Michele 1990; Atkinson et al. 1991), which is

being developed by TXT Ingegneria Informatica in Italy as part of the Esprit project (a joint

e�ort of several European governments, companies, and universities to signi�cantly improve

software quality). DRAGOON is based on Ei�el (Meyer 1988) and provides full syntactic and

semantic support for object-oriented programming.

This paper describes and evaluates the syntax of the DRAGOON extensions to Ada and

proposes improvements to it. The rest of the paper is organized as follows: Section 2 gives

necessary background information; section 3 describes the current syntax for DRAGOON and

gives examples of its use; section 4 explains the criteria used to evaluate the syntax; section 5

evaluates the syntax and lists the de�ciencies found in it; section 6 provides recommendations

on how to improve the syntax; and section 7 gives concluding remarks.

2. Background Information

This section provides background information needed for understanding the remainder of

the paper. Object-oriented programming terms and concepts are de�ned, and the notation

used for describing the DRAGOON syntax is explained. Since the reader is assumed to be

familar with Ada, an overview of Ada is not given.

2.1. Object-Oriented Programming Terms and Concepts

Reading the literature reveals that no universally adopted terminology exists for describing

object-oriented programming concepts (Wirfs-Brock and Johnson 1990). The three most widely

known object-oriented programming languages|Smalltalk, C++ (Stroustrup 1986; Ellis and

Stroustrup 1990), and Ei�el|often use di�erent terms to refer to the same concepts or the

same term to refer to di�erent concepts. The terms and de�nitions below are based on Booch

(1991) and Wegner (1990) and will be used in the rest of this paper.

An object is a software entity that consists of a set of state data and a set of operations on

that data. Another common name for an object is an instance. The state data of an object are

composed of its instance variables; the operations permitted on an object are its methods.

A class is a template for building similar objects. A class speci�es the instance variables and

methods that all objects belonging to the class will have. Together, these instance variables

and methods are called the features of the class.

A class or subprogram that contains or uses an instance of another class is called a client of

that class. Methods that may be used by a client are said to be visible. Methods that may be

used only within the class in which they are de�ned are called internal methods. The visible

methods compose the class interface or speci�cation. Instance variables, internal methods, and

the code for visible methods compose the class implementation or body.

Classes can share interfaces and implementations through inheritance, thus forming a class

hierarchy. Within a hierarchy, a descendant class can inherit instance variables and methods

from one or more ancestor classes. A hierarchy in which a descendant class can have more than

one ancestor class uses multiple inheritance; a hierarchy in which a descendant class can have

only one ancestor class uses single inheritance.

A class may specify the interface for some methods without providing an implementation

for them. Such methods are called deferred methods, and the class containing them is called an

abstract class. An abstract class cannot have any instances. Descendant classes can implement

the given interface for the deferred methods of an abstract ancestor. A class that provides an

implementation for every method in its interface is called a concrete class.

2.2. Syntax Notation

The published papers on DRAGOON do not give a formal de�nition of the syntax of the

language; instead, they illustrate it with speci�c examples. The de�nitions used in the paper

were developed by the author after a careful study of the published examples. The notation

is the same as that used in describing the context-free syntax of Ada (Nyberg 1989). This

notation is a variation of the well-known Backus-Naur Form (Pratt 1984), with the following

rules:

� Lowercase words, which may include embedded underscores, denote syntactic cate-

gories; for example, class declaration.

� Boldface words and symbols denote literal words and symbols. For example,

class ;

denotes the reserved word class followed by a literal semicolon.

� The symbol ::= denotes a de�nition of a syntactic category. For example,

class declaration ::= class specification ;

de�nes the syntactic category class declaration to consist of a

class specification followed by a semicolon.

2

� A vertical bar (j) separates alternative items. For example,

method modifier ::= completed j rede�ned

means that a method modifier may be either the reserved word completed or the

reserved word rede�ned.

� Square brackets ([and]) surround an optional item. For example,

method specification ::= subprogram specification [defer part]

means that a method specification may, or may not, contain a defer part.

� Braces (f and g) surround an item that may appear zero or more times. For example,

identifier list ::= identifier f, identifierg

de�nes an identifier list to be an identifier followed by zero or more comma-

separated identifiers.

� A syntactic category that begins with an italicized part is equivalent to the syntactic

category without the italicized part. The italicized part is used to convey semantic

information. For example, syntactically class identifier list is equivalent to

identifier list; the class pre�x means that the language semantics requires that

the identi�ers denote names of classes.

� Only new and modi�ed syntactic categories are de�ned; any category for which a

de�nition is not speci�cally given has the same de�nition as it does in Ada.

The notation used in speci�c examples is the same as that used in the examples in the

Ada de�nition. Speci�cally, reserved words are written in lowercase letters, and identi�ers are

written in uppercase letters with embedded underscores. However, this is only a convention;

DRAGOON, like Ada, is insensitive to case. The examples given are meant to illustrate the

syntax of DRAGOON only; they do not necessarily represent good programming style.

3. DRAGOON Syntax

This section describes the DRAGOON syntax for classes, objects, and inheritance. Minor

aspects of the syntax, which would have no impact on the evaluation, are ignored.

The discussion, which concentrates on syntactic issues alone, neither provides an overview

of the entire DRAGOON language nor discusses semantic issues. Also, DRAGOON allows

classes to be parameterized, concurrent, and distributed, but these aspects of the language are

not discussed. The syntax for parameterized classes is not described in any available published

literature. Concurrent and distributed classes are not discussed because doing so would greatly

complicate the discussion without signi�cantly a�ecting the conclusions.

3.1. Classes

The syntactic structure of a class de�nition in DRAGOON is analogous to the syntactic

structure of a package de�nition in Ada. Speci�cally, DRAGOON requires physical separation

of a class interface and its implementation. The language also adopts the Ada nomenclature;

the interface of a class is called its speci�cation, and the implementation of a class is called its

body.

3

3.1.1. Class speci�cation. A DRAGOON class speci�cation resembles an Ada package

speci�cation with the following three di�erences:

1. The DRAGOON reserved word class replaces the reserved word package.

2. The DRAGOON reserved word introduces is added.

3. Only method de�nitions and inheritance (see section 3.3) are allowed in a class

speci�cation.

Like a package speci�cation, a class speci�cation is a library unit. It may include with

clauses to obtain visibility of classes or packages de�ned separately, and it may be compiled

separately from the corresponding class body. Within a class speci�cation, the syntactic form

of a method declaration is identical to the syntactic form of an Ada subprogram declaration

within a package speci�cation.

The syntax for a class speci�cation is given below:

library unit ::=

subprogram declaration j package declaration

j generic declaration j generic instantiation

j subprogram body j class declaration

class declaration ::= class specification ;

class specification ::=

class identifier is

[introduces specification]

end [class simple name]

introduces specification ::=

introduces

method declaration

f method declarationg

method declaration ::= method specification ;

method specification ::= subprogram specification

Example 1 shows a simple class speci�cation (Atkinson et al. 1991). This class de�nes an

interface for a simple one-item bu�er class called UNI BUFFER; the interface consists of the two

methods PUT and GET. The bu�er accepts and makes available entities of type ITEM de�ned in

the package SIMPLE.

with SIMPLE;

class UNI BUFFER is

introduces

procedure PUT (I : in SIMPLE.ITEM); -- method definition

procedure GET (I : out SIMPLE.ITEM); -- method definition

end UNI BUFFER;

Example 1. A class speci�cation.

4

3.1.2. Class body. A DRAGOON class body corresponds to an Ada package body even

more closely than a class speci�cation corresponds to a package speci�cation. The only syntactic

di�erence is the use of the reserved word class in place of package. No special restrictions

limit what may appear within a class body. Each method de�ned in the class speci�cation

must have an implementation in the body, and any instance variables for the class must be

de�ned in the body.

The following de�nes the syntax for a class body:

library unit body ::= subprogram body j package body j class body

class body ::=

class body class simple name is

[declarative part]

end [class simple name] ;

Example 2 shows a possible body for the UNI BUFFER class (Atkinson et al. 1991). Except

for the beginning reserved word, it appears identical to an Ada package body of the same name.

Also, the instance variable declaration and the method bodies are identical syntactically to Ada

variable declarations and subprogram bodies, respectively.

class body UNI BUFFER is

BUFFER : SIMPLE.ITEM; -- instance variable

procedure PUT (I : in SIMPLE.ITEM) is

begin

BUFFER := I; -- method body

end PUT;

procedure GET (I : out SIMPLE.ITEM) is

begin

I := BUFFER; -- method body

end GET;

end UNI BUFFER;

Example 2. A class body.

3.2. Objects

A DRAGOON object syntactically resembles an Ada variable. Speci�cally, the DRAGOON

syntax for declaring an object of some class is identical to the Ada syntax for declaring a

variable of some type. However, unlike an ordinary Ada variable, a DRAGOON object does

not actually exist (that is, storage space is not allocated for it and its methods cannot be called)

until explicitly created by either calling the special CREATE method (Atkinson et al. 1991) or

by assigning to it an object for which the CREATE method has been called. The CREATE method

is similar in e�ect to the new allocator for access types in Ada. The requirement for its use is

a semantic issue, and thus it is not expressed in the syntax.

5

The DRAGOON notation for invoking a method resembles the Ada syntax for calling

a subprogram, and it is consistent with the notation of most object-oriented programming

languages. Outside of a class body, a method is invoked by giving its name and parameters

pre�xed by the name of an object belonging to a class in which the method is de�ned. Within

a class body, an object name pre�x is not usually required, and thus a method may be invoked

by giving its name and parameters only.

The syntax for object declaration and method invocation is given below:

basic declaration ::= as de�ned in Ada j class object declaration

class object declaration ::=

identifier list : class name ;

method invocation ::=

object name.method name [actual parameter part] ;

internal method invocation ::=

method name [actual parameter part] ;

Example 3 illustrates de�ning and creating an object, and also calling its methods. It also

illustrates bypassing, through assignment, the need for an explicit CREATE.

with UNI BUFFER, SIMPLE;

procedure USE BUFFER is

X : SIMPLE.ITEM;

BUFF1 : UNI BUFFER; -- define a UNI BUFFER object

BUFF2 : UNI BUFFER; -- define another UNI BUFFER object

begin

BUFF1.CREATE; -- create the object

X := -- some appropriate value of type SIMPLE.ITEM

BUFF1.PUT (X); -- invoke the PUT method

BUFF2 := BUFF1; -- BUFF2 and BUFF1 now are the same object

BUFF2.GET (X); -- invoke the GET method

end USE BUFFER:

Example 3. Object de�nition, creation, and use.

3.3. Inheritance

DRAGOON supports multiple inheritance for classes. The language allows a descendant

class to modify methods from an ancestor and to add its own methods and variables.

DRAGOON also allows an ancestor class to defer to its descendants the implementation of

a method.

Syntactically, a descendant class lists its ancestors in its speci�cation following the reserved

word inherits. Inherited methods that are to be modi�ed are listed after the reserved word

rede�nes, and inherited methods that are to be completed (that is, given an implementation)

are listed following the reserved word completes. A method may be completed only if it was

speci�ed as deferred (signi�ed by the reserved words is deferred) by an ancestor.

6

The following de�nes the syntax for inheritance:

class specification ::=

class identifier is

[inherits list]

[redefines list]

[completes list]

[introduces specification]

end [class simple name]

inherits list ::=

inherits

class identifier list ;

redefines list ::=

rede�nes

method identifier list ;

completes list ::=

completes

method identifier list ;

method specification ::= subprogram specification [defer part]

defer part ::= is deferred

Example 4 illustrates the syntactic aspects of inheritance; it includes rede�ned, deferred,

and completed methods (Di Maio et al. 1989). To avoid unnecessary complexity in the example,

the class bodies are not shown.

The body of class PRINTER DEVICE may de�ne some instance variables and internal

subprograms, but it cannot give bodies for either the RESET or PRINT methods, because these

methods are deferred. The body of class DAISY PRINTER must provide implementations for

both methods because they are listed in its completes section.

Objects of class LASER PRINTER have access to the methods RESET, PRINT, and

GRAPHIC PRINT via inheritance. The body of class LASER PRINTER must contain implemen-

tations for the new method LOAD FONT and for the rede�ned methods RESET (inherited from

DAISY PRINTER) and GRAPHIC PRINT (inherited from GRAPHIC DEVICE). It cannot have an

implementation for the method PRINT because that method is inherited without rede�nition

from DAISY PRINTER.

4. Criteria for Evaluation

The syntax of a programming language serves two primary purposes: it provides the notation

for communication between programmers, and it provides the notation by which a programmer

communicates information to a language processor. Because people are not machines, these

two purposes often con
ict. Since a language designer cannot create a syntax that ful�lls both

purposes simultaneously and fully, he must compromise. Pratt has listed four general criteria

that a designer may use to guide and evaluate those compromises (Pratt 1984):

7

class PRINTER DEVICE is

introduces

procedure RESET is deferred;

procedure PRINT (F : in FILE) is deferred;

end PRINTER DEVICE;

class DAISY PRINTER is

inherits

PRINTER DEVICE;

completes

RESET, PRINT;

end DAISY PRINTER;

class GRAPHIC DEVICE is

introduces

procedure GRAPHIC PRINT (F : in FILE);

end GRAPHIC DEVICE;

class LASER PRINTER is

inherits

DAISY PRINTER, GRAPHIC DEVICE;

redefines

RESET, GRAPHIC PRINT;

introduces

procedure LOAD FONT;

end LASER PRINTER;

Example 4. Multiple inheritance with rede�ned and deferred methods.

1. Readability|a programmer can deduce the underlying structure of the algorithms and

data structures of a program by reading its source.

2. Writeability|a programmer can express algorithms and data structures naturally and

concisely.

3. Lack of ambiguity|each syntactic construct has one and only one meaning.

4. Ease of translation|a program can be translated into an executable form cheaply and

quickly.

The syntax of a particular programming language depends on the relative importance that

its designers assign to satisfying each of these criteria. For example, the designers of the Ada

programming language considered readability to be paramount (Nyberg 1989). In contrast, the

designers of the C programming language considered writeability and ease of translation to be

most important (Kernighan and Ritchie 1978). As a result, the syntax of Ada di�ers greatly

from the syntax of C.

In developing or evaluating the notation of an extension to an existing language, one more

criterion is important:

5. Consistency with existing syntax|the syntax obeys the conventions established in

the base language.

8

If the notation of an extension is signi�cantly di�erent from the base notation|or worse, if

its conventions and style con
ict with those of the base notation|programmers will �nd the

extension notation di�cult to learn and use. This is true even if the extended syntax is, by

itself, readable, writeable, free of ambiguity, and easy to translate.

5. Evaluation of DRAGOON Syntax

Evaluated against the above-mentioned criteria, the syntax of DRAGOON has two

shortcomings:

1. Lists of method names, such as those required in a rede�nes or completes

section, hinder readability, writeability, and ease of translation.

2. The overall style of the syntax seems to con
ict with the style of the underlying Ada

syntax.

The rest of this section explains in detail these two de�ciencies of the syntax and illustrates

both with examples.

5.1. Lists of Method Names

Section 3.3 discussed the syntax for rede�ned or completed methods; a list of method names

follows the appropriate reserved word. The primary di�culty with this syntax is that it obscures

the association between a method and the class in which it was de�ned. As a result, programs

are less easy to read, translate, and write than they need to be.

To illustrate the problem, consider the rede�nes section of class LASER PRINTER of

example 4. Method RESET is inherited from class DAISY PRINTER and method GRAPHIC PRINT

is inherited from class GRAPHIC DEVICE, but this is not evident from the text of the class

speci�cation alone. To obtain this information, a programmer (or a language translator) must

examine the class speci�cations for each ancestor class and look for the de�nition of a method

with the appropriate name.

Lists of method names also prohibit a programmer from using the same name for a method

within two or more classes that might have a common descendant. This hinders writeability

since a programmer might have to invent di�erent names simply to prevent possible, future

name clashes. Name lists do not provide a way to resolve name clashes within the descendant,

which is where the problem actually is.

Example 5 illustrates the di�culty. Class C inherits two methods named P, one from class A

and one from class B. Within class C and any of its clients, a reference to P is ambiguous.

5.2. Di�erences in Style

The second de�ciency in the described DRAGOON syntax is that its style does not conform

fully to the style of the language on which it was based. At least three inconsistencies between

the syntactic style of DRAGOON and Ada can be identi�ed.

One con
ict in style between the two languages is that DRAGOON does not follow the Ada

convention of using di�erent syntactic constructs to distinguish di�erent entities. Speci�cally,

a method speci�cation is syntactically identical to a subprogram speci�cation, but a method

is not semantically identical to a subprogram. The DRAGOON syntax is not ambiguous (that

is, a programmer or a translator can always determine from the context whether a particular

speci�cation de�nes a method or a subprogram), but it can be confusing. In contrast, Ada uses

9

di�erent reserved words to specify a function and a procedure, although doing so is not strictly

necessary either.

class A is

introduces

procedure P;

procedure M (X : A);

end A;

class B is

introduces

procedure P;

procedure N (Y : B);

end B;

class C is

inherits A, B;

-- is the method P that is visible to the clients of C inherited from

-- class A or from class B?

end C;

Example 5. Con
icts in method names.

A second con
ict in style is the DRAGOON sectioning of declarations. Ada does not

have separate sections for the various types of declarations; variable, exception, subprogram,

package, and task declarations generally may be interspersed in whatever manner seems best

to a programmer. The only separate section in an Ada package is the private part, and it is

there to help language translators only. DRAGOON violates this convention by having separate

sections for inheritance, method de�nitions, method completion, and method rede�nition.

The third con
ict is the DRAGOON imposition of an order on sections. Ada places few

restrictions on the order of declarations; the only requirement is that a name be de�ned before

it is used. The sections of a DRAGOON class speci�cation must follow a partial order: the

inherits section must precede either a rede�nes or a completes section, and the introduces

section must follow all these.

Taken together, these last two aspects of DRAGOON make a class speci�cation resemble

syntactically a Pascal program more than an Ada package speci�cation. As an illustration,

example 6 shows the basic structure of a DRAGOON class speci�cation, a Pascal program,

and an Ada package speci�cation. The Ada package speci�cation imposes very little structure

on its contents; however, the DRAGOON class speci�cation, like a Pascal program, imposes a

fairly rigid structure on its contents.

6. Possible Improvements

Neither of the de�ciencies in the DRAGOON syntax noted in the previous section are severe,

and both can be eliminated by making three modi�cations to the syntax. The following two

modi�cations are simple:

10

1. Introduce the new reserved wordmethod to be used instead of procedure in method

de�nitions. This change eliminates the �rst style con
ict identi�ed in section 5.2.

2. Eliminate the introduces section. This change partially addresses the second and

third style con
icts discussed in section 5.2.

DRAGOON Pascal Ada

class C is program P package P is

inherits label <most anything>

<only class names> <only labels here> < can go here >

redefines const

<only method names> <only constants> private

completes type <most anything>

<only method names> <only type defs> < can go here >

introduces var

<only method specs> <only var decls> end P;

end C; begin

. . .

end.

Example 6. Structure of DRAGOON, Pascal, and Ada.

The result of making these two modi�cations is described by the following syntax:

class declaration ::= class specification ;

class specification ::=

class identifier is

f method or inherit declaration g

end [class simple name]

method or inherit declaration ::= method declaration

j inherit declaration

method declaration ::= method specification [defer part] ;

method specification ::=

method identifier [formal part]

defer part ::= is deferred

class body ::=

class body class simple name is

[class body declarative part]

end [class simple name] ;

class body declarative part ::=

f basic declarative item g f class body later declarative item g

class body later declarative item ::=

later declarative item j method body

11

method body ::=

method specification is

[declarative part]

begin

sequence of statements

end [method simple name] ;

Example 7 shows how the class speci�cation of example 1 and the class body of example 2

would be rewritten using the modi�ed syntax.

with SIMPLE;

class UNI BUFFER is

method PUT (I : in SIMPLE.ITEM);

method GET (I : out SIMPLE.ITEM);

end UNI BUFFER;

class body UNI BUFFER is

BUFFER : SIMPLE.ITEM; -- instance variable

method PUT (I : in SIMPLE.ITEM) is

begin

BUFFER := I;

end PUT;

method GET (I : out SIMPLE.ITEM) is

begin

I := BUFFER;

end GET;

end UNI BUFFER;

Example 7. Revised class speci�cation and body.

These two modi�cations neither address the problem caused by lists of method names

(section 5.1) nor fully resolve the con
icts in syntactic style between DRAGOON and Ada.

To solve the remaining shortcomings of the DRAGOON syntax, a third modi�cation is needed.

Speci�cally, the inherits, rede�nes, and completes sections must be eliminated and replaced

by inheritance clauses, which may appear interspersed with method de�nitions in a class

speci�cation.

A separate inheritance clause is used for each ancestor class. The clause begins with the

reserved word inherit followed by the name of the ancestor class. After the ancestor name, the

methods from the ancestor class that are to be rede�ned or completed are fully speci�ed. Thus,

the relationship between a method and its de�ning class is explicit; neither a programmer nor

a translator have to perform a search to discover the relationship. The clause is terminated by

the reserved words end inherit. If ancestor methods are inherited without modi�cation, the

terminating phrase is not needed.

The following syntax describes the inheritance clause. In this syntax, an inheritance

clause containing no completed method rede�nitions is called a simple inheritance clause;

12

an inheritance clause containing method rede�nitions or completions is called a compound

inheritance clause. Thus,

inherit declaration ::= inherit clause ;

inherit clause ::= simple inherit clause j compound inherit clause

simple inherit clause ::= inherit class simple name

compound inherit clause ::=

inherit class simple name is

f method modification declaration g

end inherit [class simple name]

method modification declaration ::=

method specification is method modifier ;

method modifier ::= completed j rede�ned

Example 8 shows the classes of example 4 rewritten to conform to the proposed new syntax.

With the new syntax, a programmer can see immediately, without visually searching back

through the program text, in which class each completed and rede�ned method was originally

de�ned.

class PRINTER DEVICE is

method RESET is deferred;

method PRINT (F : in FILE) is deferred;

end PRINTER DEVICE;

class DAISY PRINTER is

inherit PRINTER DEVICE is

method RESET is completed;

method PRINT (F : in FILE) is completed;

end inherit PRINTER DEVICE;

end DAISY PRINTER;

class GRAPHIC DEVICE is

method GRAPHIC PRINT (F : in FILE);

end GRAPHIC DEVICE;

class LASER PRINTER is

inherit DAISY PRINTER is

method RESET is redefined;

end inherit DAISY PRINTER;

method LOAD FONT; -- note that the order does not matter

inherit GRAPHIC DEVICE is

method GRAPHIC PRINT (F : in FILE) is redefined;

end inherit GRAPHIC DEVICE;

end LASER PRINTER;

Example 8. Printer example rewritten.

13

Another advantage of the inheritance clause is that it provides a context for renaming

methods whose original name con
icts with that of another method. A construct for such

renaming is not included in the syntax given above, but one can be added easily. Example 9,

which is a modi�cation of example 5, illustrates one possible solution.

class A is

method P;

method M (X : A);

end A;

class B is

method P;

method N (Y : B);

end B;

class C is

inherit A is

method CP renames P;

end inherit A;

inherit B; -- no need to rename P, since conflict already resolved

end C;

Example 9. Method name con
icts resolved.

7. Concluding Remarks

This paper has described and evaluated the DRAGOON syntax for classes, objects, and

inheritance. The evaluation revealed two de�ciencies in the syntax. First, lists of method

names, such as those required in a rede�nes or completes section, hinder the readability,

writeability, and ease of translation. Second, the overall style of the syntax seems to con
ict

with the style of the underlying Ada syntax. Neither of these de�ciencies is severe, and both

can be eliminated without di�culty.

This paper proposes the following three modi�cations to the syntax, which the author

believes can correct the current de�ciencies:

1. In method de�nitions, introduce the new reserved word method to be used

instead of procedure.

2. Eliminate the introduces section.

3. Replace the inherits, rede�nes, and completes sections by an inheritance clause,

which makes explicit the relationship between inherited methods and their

de�ning classes.

Implementing these changes should make DRAGOON programs easier to understand and write

than they are currently, and this simpli�cation should result in a greater consistency between

the syntactic styles of DRAGOON and Ada.

NASA Langley Research Center

Hampton, VA 23665-5225

June 5, 1992

14

8. References

Anon. 1989a: Ada 9X Project Report|Ada 9X Project Requirements Workshop. O�ce of the Under Secretary

of Defense for Acquisition.

Anon. 1989b: Classic-Ada User's Manual. Software Productivity Solutions.

Atkinson, Colin; Goldsack, Stephen; Di Maio, Andrea; and Bayan, Rami 1991: Object-Oriented Concurrency

and Distribution in DRAGOON. J. Object-Oriented Program., vol. 4, no. 1, pp. 11{20.

Bobrow, Daniel G.; DeMichiel, Linda G.; Gabriel, Richard P.; Keene, Sonya E.; Kiczales, Gregor; and Moon,

David A. 1988: Common Lisp Object System Speci�cation. SIGPLAN Not., vol. 23, Special Issue,

pp. 1-1{1-48.

Booch, Grady 1991: Object Oriented Design With Applications. Benjamin/Cummings Publ. Co., Inc.

Di Maio, Andrea; Cardigno, Cinzia; Bayan, Rami; Destombes, Catherine; and Atkinson, Colin 1989:

DRAGOON: An Ada-Based Object Oriented Language for Concurrent, Real-Time, Distributed Systems.

Ada: The Design Choice|Proceedings of the Ada-Europe Conference, Cambridge Univ. Press, pp. 39{48.

Donaldson, C. M. 1989: Dynamic Binding and Inheritance in an Object-Oriented Ada Design. Ada: The

Design Choice|Proceedings of the Ada-Europe Conference, Cambridge Univ. Press, pp. 16{25.

Ellis, Margaret A.; and Stroustrup, Bjarne 1990: The Annotated C++ Reference Manual. Addison-Wesley

Publ. Co.

Forestier, J. P.; Fornarino, C.; and Franchi-Zannettacci, P. 1989: Ada++|A Class and Inheritance Extension

for Ada. Ada: The Design Choice|Proceedings of the Ada-Europe Conference, Cambridge Univ. Press,

pp. 3{15.

Genolini, S.; Di Maio, A.; and De Michele, M. 1990: DRAGOON and Ada: The Wedding of the Nineties.

Proceedings of the Seventh Washington Ada Symposium, Joseph P. Johnson, ed., Assoc. for Computing

Machinery, Inc., pp. 245{254.

Goldberg, Adele; and Robson, David 1983: Smalltalk-80, The Language and Its Implementation. Addison-

Wesley Publ. Co.

Johnson, Joseph P., ed. 1990: Proceedings of the Seventh Washington Ada Symposium. Assoc. for Computing

Machinery, Inc.

Kernighan, Brian W.; and Ritchie, Dennis M. 1978: The C Programming Language. Prentice-Hall, Inc.

Meyer, Bertrand 1988: Object-Oriented Software Construction. Prentice Hall, Inc.

Moon, David A. 1986: Object-Oriented Programming With Flavors. SIGPLAN Not., vol. 21, no. 11, pp. 1{8.

Nyberg, Karl A., ed. 1989: The Annotated Ada Reference Manual. ANSI/MIL-STD-1815A-1983 (Annotated).

Pratt, Terrence W. 1984: Programming Languages|Design and Implementation, Second ed. Prentice-Hall,

Inc.

Simonian, Richard; and Crone, Michael 1988: InnovAda: True Object-Oriented Programming in Ada.

J. Object-Oriented Program., vol. 1, no. 4, pp. 14{21.

Stroustrup, Bjarne 1986: The C++ Programming Language. Addison-Wesley Publ. Co.

Wegner, Peter 1990: Concepts and Paradigms of Object-Oriented Programming|Expansion of Oct. 4

OOPSLA-89 Keynote Talk. ACM OOPS Messenger, vol. 1, no. 1, pp. 7{87.

Winkler, J�urgen F. H. 1990: Adding Inheritance to Ada. Proceedings of the Seventh Washington Ada

Symposium, Joseph P. Johnson, ed., Assoc. for Computing Machinery, Inc., p. 241{244.

Wirfs-Brock, Rebecca J.; and Johnson, Ralph E. 1990: Surveying Current Research in Object-Oriented Design.

Commun. ACM, vol. 33, no. 9, pp. 104{124.

15

